(3x+1)2-3(x-2)2=6x^2+1

Simple and best practice solution for (3x+1)2-3(x-2)2=6x^2+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)2-3(x-2)2=6x^2+1 equation:



(3x+1)2-3(x-2)2=6x^2+1
We move all terms to the left:
(3x+1)2-3(x-2)2-(6x^2+1)=0
We multiply parentheses
6x-6x-(6x^2+1)+2+12=0
We get rid of parentheses
-6x^2+6x-6x-1+2+12=0
We add all the numbers together, and all the variables
-6x^2+13=0
a = -6; b = 0; c = +13;
Δ = b2-4ac
Δ = 02-4·(-6)·13
Δ = 312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{312}=\sqrt{4*78}=\sqrt{4}*\sqrt{78}=2\sqrt{78}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{78}}{2*-6}=\frac{0-2\sqrt{78}}{-12} =-\frac{2\sqrt{78}}{-12} =-\frac{\sqrt{78}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{78}}{2*-6}=\frac{0+2\sqrt{78}}{-12} =\frac{2\sqrt{78}}{-12} =\frac{\sqrt{78}}{-6} $

See similar equations:

| 2x+9=7x+15 | | (5x-4)(x+4)=(4x-5)(x+8) | | -47+3b=7-3b | | 2b^2-6=-4b | | x²-12x+9=2x-4 | | 50+35b=190 | | 3x+5(x-6)=34 | | 4x+35=-10-x | | 9-3n+4+10n=41 | | -43=-1+t | | 4n-2n-2n+5n=15 | | 4x+-9=-36 | | -4+12y+8=16+16y-40 | | 4y+42=8-10y | | 2m=11=37 | | 12x+9=6x+3 | | 24x+7=30x-23 | | 11x+12=12x-8 | | 0=-3(x-2/3)+19 | | 17=k-20 | | 12=0.15/x | | (3x-1^4x=1 | | 3-9x=48 | | 10b-6b=-16 | | 3/x+6=10 | | 3x+x=280 | | 8-7d=92 | | 5m+7=m+47 | | 150m-125m+38,800=40,200-175m | | 4j^2+96j+92=0 | | 21+3c=-4c+28 | | -15×+a=-10 |

Equations solver categories